For many of us, memories of our childhood have become a bit hazy, if not vanishing entirely. But nobody really remembers much before the age of 4, because nearly all humans experience what’s termed “infantile amnesia,” in which memories that might have formed before that age seemingly vanish as we move through adolescence. And it’s not just us; the phenomenon appears to occur in a number of our fellow mammals.
The simplest explanation for this would be that the systems that form long-term memories are simply immature and don’t start working effectively until children hit the age of 4. But a recent animal experiment suggests that the situation in mice is more complex: the memories are there, they’re just not normally accessible, although they can be re-activated. Now, a study that put human infants in an MRI tube suggests that memory activity starts by the age of 1, suggesting that the results in mice may apply to us.
Less than total recall
Mice are one of the species that we know experience infantile amnesia. And, thanks to over a century of research on mice, we have some sophisticated genetic tools that allow us to explore what’s actually involved in the apparent absence of the animals’ earliest memories.
A paper that came out last year describes a series of experiments that start by having very young mice learn to associate seeing a light come on with receiving a mild shock. If nothing else is done with those mice, that association will apparently be forgotten later in life due to infantile amnesia.
But in this case, the researchers could do something. Neural activity normally results in the activation of a set of genes. In these mice, the researchers engineered it so one of the genes that gets activated encodes a protein that can modify DNA. When this protein is made, it results in permanent changes to a second gene that was inserted in the animal’s DNA. Once activated through this process, the gene leads to the production of a light-activated ion channel.